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1. INTRODUCTION

Phase-locked loops (PLLs) are used in a large number of electronic devices, for instance,
television sets, cellular telephones, synthesizers, oscillators, radar systems, to name a few.
There is a good number of references devoted to the subject of PLLs; see, e.g., references
[1}12] and the references therein.

A PLL is essentially a non-linear oscillator that locks its frequency and phase to those of
the input applied to it. A standard PLL is shown in Figure 1. The components of the PLL
are the phase-frequency detector (PFD), loop "lter (LF), and voltage-controlled oscillator
(VCO). The scalar-valued input to the PLL is
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for all t after a "nite time t*'0, where in this case the output frequency and phase are
locked to those of the input; (2) achieve locking fast (small t*). It can happen that a PLL
does not achieve locking (stability problem) or achieves it after a long time. These are
certainly undesirable behaviors of PLLs which should be eliminated by careful design.

In this note, a novel PLL is proposed that performs extremely well: it has a large
acquisition range and achieves locking fast. In particular, it outperforms the standard PLL
in achieving locking fast. The superior performance of the proposed PLL is due to the PFD
and a non-linear "lter added to the loop.
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Figure 1. A standard PLL the components of which are PFD (phase-frequency detector), LF (loop "lter), and
VCO (voltage-controlled oscillator). The input to the PLL is t>r (t) and its output is t>v(t).

Figure 2. The NPLL in which the parallel connection of the non-linear element N and the constant gain
C succeeds the LF and is followed by the low-pass "lter ¸(s).
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2. NOVEL PHASE-LOCKED LOOPS WITH NON-LINEAR FILTERS

The contribution of this note, which is the design of a novel PLL with enhanced locking
capabilities, is unveiled in this section. The proposed PLL is shown in Figure 2. In this PLL,
the parallel connection of a non-linear element N and a constant gain C succeeds the LF
and is followed by a low-pass "lter ¸(s). The non-linear element N, or the parallel
connection of N and C, or the parallel connection of N and C connected serially to ¸(s), or
the series connection of the LF to the parallel connection of N and C connected serially to
¸(s) is called the non-linear ,lter. The PLL in Figure 2 is denoted by NPLL. Note that if the
loop containing N is disconnected and C and ¸ (s) are set equal to 1, then the NPLL
becomes the standard PLL.

A "rst step to the study of the NPLL is to obtain a mathematical model that describes its
dynamics. In particular, it is desirable to obtain a model for the evolution of a quantity of
interest called the frequency-phase error. This quantity is de"ned as
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for all t*0. Locking is achieved when /
e
(t)+0 for all t after a "nite time t*'0.

A mathematical model of the NPLL can be obtained when the dynamics of its
components are known. In this section, the components of the NPLL are "rst described.



Figure 3. The graph of the average of the non-linear function F corresponding to the PFD.
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Then, a useful mathematical model of the NPLL is derived by which the evolution of the
frequency-phase error can be determined conveniently.

The components of the NPLL in Figure 2 are described in the following.

2.1. PHASE-FREQUENCY DETECTOR (PFD)

A widely used phase detector is the PFD which has a large acquisition range. The PFD is
usually used in charge pump PLLs (see, e.g., references [1, 12, 13]). Having r( ) ) and v( ) ) in
equations (1) and (2), respectively, the scalar-valued output of the PFD can be written as
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amplitudes (see, e.g., references [1, 12, 13]), F :RPR is a non-linear function, and
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(t)3R is the high-frequency component of the PFD output. The function F has

a complicated form in general; however, the graph of its average is that depicted in Figure 3
(see, e.g., references [1, 12, 13]).

2.2. LOOP FILTER (LF)

The LF is a single-input single-output linear system that follows the PFD. This system
should be a low-pass "lter in order to suppress the high-frequency component of u ( ) )*the
second term in equation (5). This is an important role of the LF: the more the high-
frequency component of u( ) ) is suppressed, the better the NPLL performs. The output of
the LF "lter can be written as
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for all t*0, where h( ) ) denotes the impulse response of the LF and * denotes the
convolution operator.



Figure 4. The graphs of the non-linear element N in equation (9). By decreasing e the slope of N at the origin
increases.
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A commonly used LF has the transfer function (see, e.g., references [1, 12, 13])
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for all t*0. In equations (8), for all t*0, the state x(t)3R and the input u (t) and the
output y (t) are those in equations (5) and (6), respectively.

2.3. NON-LINEAR ELEMENT N

The non-linear element N is chosen as one of the following functions:
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Figure 4. It is straightforward to show that by decreasing e the slope of N at the origin
increases.
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The scalar-valued output of N is

y
N
(t)"N (y (t)), (10)

for all t*0. Since for a superior performance e should be chosen small, the slope of N is
large at the origin. Therefore, inputs to N with small amplitudes are ampli"ed signi"cantly.
This statement is also true for the high-frequency component of the LF output*the second
term in equation (6). Thus, y

N
( ) ) can be quite noisy, and a low-pass "lter must be placed

after N.

2.4. CONSTANT GAIN C

The constant gain 0)C)1 is connected to N in parallel. The importance of C is
explained later.

2.5. LOW-PASS FILTER ¸(s)

The "lter ¸ (s) is a single-input single-output low-pass "lter that suppresses the high-
frequency component of y

N
( ) ). The transfer function of this "lter is
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for all s3C, where a'0 is the "lter cut-o! frequency. The state space representation of ¸ (s)
is
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2.6. VOLTAGE-CONTROLLED OSCILLATOR (VCO)

The VCO is a special component of PLLs. The input to the VCO is y
L
( ) )"f( ) ) in

equation (12b). Let
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for all t*0, where K
o
'0 is the VCO gain. The reason for equations (13) and (14) is that

there is an integrator in the VCOs which generates the output phase. The output of the
VCO is v ( ) ) in equation (2).

Thus far the dynamics of the components of the NPLL are described. Referring to
Figure 2 and using equations (5), (8), (9a), (10), (12a), (13), and (14), a non-linear
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mathematical model of the NPLL can be written as
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for all t*0. The mathematical model in equations (15) provides a useful and convenient
tool for simulating the dynamics of the NPLL and determining its behavior quantitatively.
By solving system (15) (numerically), the evolution of the frequency-phase error can be
determined via

/
e
(t)"(u

o
!u

i
)t#K

o
z (t)!/

i
(t)#/

n
(t), (16)

for all t*0. As stated earlier, the NPLL achieves locking when /
e
(t)+0 for all t after

a "nite time t*'0.
In order to compare the locking capabilities of the NPLL to those of the standard PLL,

the mathematical model of the PLL should be simulated along with system (15). This model,
which is obtained from equations (15), consists of equations (15a) and (15b) and
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for all t*0.
Simulation of the mathematical models of the NPLL and PLL provides evidence that,

due to the non-linear element N and the low-pass "lter ¸ (s), the NPLL outperforms the
standard PLL in achieving locking fast.

It should be pointed out that non-linearities somewhat similar to those in equations (9)
are introduced in control laws that achieve robust and simultaneous tracking (locking) for
a group of systems in "nite time; see reference [14]. Such non-linear control laws are
successfully used to control biaxial (also known as X>) positioning tables; see reference
[15]. A di!erent NPLL design is proposed in reference [16], where the phase detector is of
the multiplier type. The NPLL in reference [16] is the one in Figure 2 with C"0 and
¸(s)"1.

3. PERFORMANCE OF THE NPLL

In this section, the performance of the NPLL is examined carefully and is compared to
that of the standard PLL.

Let

Input frequency u
i
"200 000]2n rad/s, (18a)

PFD gain K
d
"1 V, (18b)

Function F Depicted in Figure 3, (18c)
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Parameters of the LF q
1
"500]10~6 s, q

2
"50]10~6 s, (18d)

Parameters of the nonlinear element N K
n
"1 V, e"0)1 V, (18e)

Gain of the feedforward loop C"1, (18f)

Cut-o! frequency of the low-pass "lter ¸ (s) a"125 000 l/s, (18g)

VCO gain K
o
"130 000 rad/(s V). (18h)

With this set-up several (numerical) tests are carried out by simulating the mathematical
models of the NPLL and PLL.

3.1. TEST 1

Let
Output frequency u

o
"200 000]2n rad/s, (19a)

Input phase /
i
(t)"0)1 sin 1000t, (19b)

High-frequency component of the PFD output n
d
(t)"sin(400 000]2nt), (19c)

Phase noise /
n
(t)"0)001 sin 100 000t, (19d)

for all t*0. With this set-up and the initial conditions x
o
"0 and z

o
"0)00001 s V,

equations (15) and (17) are solved numerically to obtain the time histories of the frequency-
phase error t>/

e
(t) for the standard PLL and NPLL via equation (16). These time

histories are depicted in Figure 5. It is evident that the frequency-phase error of the NPLL
locks to zero much faster than that of the PLL.

3.2. TEST 2

Let

Output frequency u
o
"180 000]2n rad/s, (20a)

Input phase /
i
(t)"0, (20b)

High-frequency component of the PFD output n
d
(t)"sin(380 000]2nt), (20c)

Phase noise /
n
(t)"0)001 sin 100 000t, (20d)

for all t*0. With this set-up and the initial conditions x
0
"0 and z

0
"0, equations (15)

and (17) are solved numerically to obtain the time histories of the frequency-phase error
t>/

e
(t) for the standard PLL and NPLL via equation (16). These time histories are

depicted in Figure 6. It is evident that the frequency-phase error of the NPLL locks to zero
much faster than that of the PLL.



Figure 5. The time histories of the frequency-phase error t>/
e
(t) in Test 1. The NPLL achieves locking much

faster than the standard PLL.
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3.3. TEST 3

Let

Output frequency u
o
"225 000]2n rad/s, (21a)

Input phase /
i
(t)"0, (21b)

High-frequency component of the PFD output n
d
(t)"sin(425 000]2nt), (21c)

Phase noise /
n
(t)"0)001 sin 100 000t, (21d)

for all t*0. With this set-up and the initial conditions x
0
"0 and z

0
"0)00001 sV,

equations (15) and (17) are solved numerically to obtain the time histories of the frequency-
phase error t>/

e
(t) for the standard PLL and NPLL via equation (16). These time

histories are depicted in Figure 7. It is evident that the frequency-phase error of the NPLL
locks to zero much faster than that of the PLL.

4. USEFUL REMARKS

In this section, some insightful remarks regarding the performance, structure, and
applications of the NPLL are given.

(1) The large acquisition range of the NPLL is due to the PFD, which performs better
than other types of phase detectors; see, e.g., references [1, 12, 13] for a detailed discussion.



Figure 6. The time histories of the frequency-phase error t>/
e
(t) in Test 2. The NPLL achieves locking much

faster than the standard PLL.

Figure 7. The time histories of the frequency-phase error t>/
e
(t) in Test 3. The NPLL achieves locking much

faster than the standard PLL.
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Figure 8. A frequency synthesizer made based on the NPLL. A divider with the dividing factor N
D

succeeds the
VCO.
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(2) Let the loop containing the constant gain C be disconnected. In this case, the NPLL
with the non-linear element N performs very well in locking the frequency-phase error /

e
( ) )

to zero fast, when Du
o
!u

i
D is small. However, it performs poorly in locking /

e
( ) ) to zero

when Du
o
!u

i
D is large, such that locking may not be achieved at all. Next, let the loop

containing C be connected, set C"1 and ¸ (s)"1, and let the loop containing N be
disconnected. In this case, the NPLL, which becomes the standard PLL, locks /

e
( ) ) to zero

even when Du
o
!u

i
D is large; however, it cannot do so fast. Thus, both N and C connected in

parallel are necessary to guarantee that the NPLL has a large acquisition range and
achieves locking very fast.

(3) The non-linear element N can be realized as an integrated circuit; see, e.g., reference
[13, p. 14] for such a realization.

(4) The PFD in the NPLL in Figure 2 can be replaced by other types of phase detectors.
For di!erent phase detectors, 0)C)1 and ¸ (s) should be retuned. For instance, if a phase
detector of the multiplier type replaces the PFD, then C should be set equal to zero.

(5) A synthesizer can be made based on the NPLL. Such a synthesizer is shown in
Figure 8. The synthesizer is essentially the NPLL in which a divider with the dividing factor
N

D
succeeds the VCO. The synthesizer achieves locking when
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for all t after a "nite time t*'0.

5. CONCLUSIONS

In this note, a novel phase-locked loop (PLL) is introduced. The proposed PLL, denoted
by NPLL, incorporates a non-linear element and a low-pass "lter in its loop. The NPLL
performs extremely well: it has a large acquisition range and achieves locking fast. In
particular, it outperforms the standard PLL in achieving locking fast. The superior
performance of the NPLL is due to the phase-frequency detector (PFD), the non-linear
element and the constant gain connected to it in parallel, and the low-pass "lter following
them. The addition of the low-pass "lter is necessary in order to remove the excessive noise
from the output phase. Results of many tests, only three of which are reported in this note,
show the superior performance of the NPLL. A synthesizer based on the NPLL is also
proposed.
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